
Docker & Kubernetes

for Data Science

Martial Luyts

Catholic University of Leuven, Belgium

martial.luyts@kuleuven.be

Contents

0. Introduction & outline of this class 1

0.1. Introduction . 2

0.2. Outline of the class . 4

1. Infrastructure of Docker . 5

1.1. What is Docker? . 6

1.2. Benefits of Docker for Data Science . 9

1.3. What is a Docker Container? . 11

1.4. Key Docker Components . 12

i

1.5. Installing Docker . 14

1.6. Basic Docker commands . 17

1.7. Docker extension in VS code . 21

1.8. Build and run a Docker image . 25

1.9. Storing and sharing data . 44

1.10. Networking . 56

1.11. Managing multi-container applications . 69

2. Introduction to Kubernetes . 81

2.1. What is Kubernetes? . 82

2.2. Comparison with Docker? . 85

c© Martial Luyts – MDA course ii

Part 0:

Introduction & outline of this class

c© Martial Luyts – MDA course 1

0.1 Introduction

• Imagine you are a data scientist working on a machine learning model.

• You set it up on your laptop, but when you share it with your team, it doesnt
work on their computers.

• Question: How can we solve this?

c© Martial Luyts – MDA course 2

• Solution: Package everything your model needs into a container.

• Source code: main scripts (e.g., .py)

• Dependency descriptors (e.g., requirements.txt)

• Docker enables this possibility

c© Martial Luyts – MDA course 3

0.2 Outline of the class

• This presentation is specifically designed for data science practitioners, who want
to learn more about one of the key building blocks of MLOps

• Prior knowledge of Python is required.

• By the end, you will understand how to use Docker for data science projects, and
gain some basic notion about Kubernetes, including:

• Understanding basic Docker commands

• Build and run a Docker image

• Store and share data

• Networking

• Managing multi-container apps

c© Martial Luyts – MDA course 4

Part 1:

Infrastructure of Docker

c© Martial Luyts – MDA course 5

1.1 What is Docker?

• Docker is a container-based platform for developing, shipping, and
running applications in containers.

• Containers are self-contained, lightweight environments

c© Martial Luyts – MDA course 6

• Helps in eliminating ”works on my machine” issues.

• Allows developers to package applications with all dependencies included in an
isolated and consistent environment.

c© Martial Luyts – MDA course 7

Intuitively:

• Think of a container like a lunchbox.

• You pack your meal (code and dependencies) inside it.

• No matter where you take it (Windows, Mac, Linux), you can open it and eat
(run the code) without worrying about the kitchen (environment setup).

c© Martial Luyts – MDA course 8

1.2 Bene�ts of Docker for Data Science

Several benefits of Docker for Data Science include:

• Reproducibility: Docker provides a consistent and reproducible environment
for running applications, making it easier to replicate experiments and results

• Portability: Docker containers are portable across different platforms, making it
easier to move applications across

• Scalability: Docker containers are light-weight and can be scaled easily, making
it easier to manage resources efficiently

• Collaboration: Docker provides a standardized environment for running
applications, making it easier to collaborate and share applications with others.

c© Martial Luyts – MDA course 9

c© Martial Luyts – MDA course 10

1.3 What is a Docker Container?

• A standardized unit of software that includes everything needed to run.

• Consists of code, runtime, system libraries, and dependencies.

• Runs the same regardless of the environment.

c© Martial Luyts – MDA course 11

1.4 Key Docker Components

• Docker Image: Read-only template that contains the application, its
dependencies, and other settings needed to run the application.

• Docker Container: A lightweight, standalone, and executable package that
includes everything needed to run the application, including the code, libraries,
and runtime.

• Dockerfile: A text file that contains a set of instructions for building a Docker
Image

• Docker Registry: A repository that stores Docker images. Docker Hub is a
popular public registry for storing and sharing Docker images.

c© Martial Luyts – MDA course 12

c© Martial Luyts – MDA course 13

1.5 Installing Docker

Docker needs to be installed on your local computer:

• Visit the official Docker website (www.docker.com/products/docker-desktop/)
and download the Docker Desktop app for your operation system.

• Install Docker Desktop and follow the instructions provided by the installer.

• Open it and check whether the Docker daemon is running.

c© Martial Luyts – MDA course 14

• To verify the installation, open the terminal and run the command

docker --version

This also ensures that the Docker Command Line Interface (CLI) can be
called, i.e.,

• Text-based tool for interacting with Docker

• Run via terminal (with Docker commands; Section 1.6)

• Full control over Docker functions, including advanced options

• Universally available, works in any environment where Docker is installed

c© Martial Luyts – MDA course 15

• To verify that Docker can pull images from the Docker Hub and run it, run the
following test container in Docker CLI:

docker run hello-world

c© Martial Luyts – MDA course 16

1.6 Basic Docker commands

Docker is managed primarily through a CLI, with commands that control Dockers
behavior and the life cycles of containers and images.

Some basic commands:

• docker run: Start a container from a specified image

• Example: docker run hello-world

• docker pull: Fetches an image from a registry (like Docker Hub) without
starting a container

• Example: docker pull ubuntu

• docker build: Create a new image from a Dockerfile. You run it in the
directory where the Dockerfile is located.

• Example: docker build -t my-image .

c© Martial Luyts – MDA course 17

c© Martial Luyts – MDA course 18

• docker push: Uploads an image you’ve created to a registry. You must be
logged in and have the right to push to the repository.

• docker images: Lists all the images that are locally stored with the Docker
engine

• docker rmi: Removes one or more images. Any containers using the image
must be stopped and removed before the image can be removed.

• docker ps: Lists running containers. Using docker ps -a will show all
containers, including stopped ones.

c© Martial Luyts – MDA course 19

• docker stop: Stops a running container.

• docker start: Starts a container that has been stopped.

• docker restart: Restarts a container that’s running or stopped.

• docker rm: Deletes one or more containers. The container must be stopped
before it can be removed.

• docker exec: Runs a command in a running container.

• Example: docker exec -it container name bash opens a bash shell
in the container.

c© Martial Luyts – MDA course 20

1.7 Docker extension in VS code

• The Docker Extension for VS Code brings the power of Docker into your
development environment

• Installation:

c© Martial Luyts – MDA course 21

• Provides an intuitive graphical interface for working with Docker, reducing the
need to switch between the terminal and your code

• The Docker Pane can be used as quick panel for visualizing all made containers,
images available locally and connection with a registry (if applicable)

c© Martial Luyts – MDA course 22

• Many of the most common Docker commands can be accessed into the Control
Palette:

• Open the palette by pressing Ctrl + Shift + P

• Type Docker in the search bar to display the available Docker commands.

c© Martial Luyts – MDA course 23

• Allows you to manage containers, images, volumes, registries and networks right
from the editor

• Provides an intuitive graphical interface for working with Docker, reducing the
need to switch between the terminal and your code

• Useful for developers that are building, debugging, and testing containerized
applications directly inside VS Code

c© Martial Luyts – MDA course 24

1.8 Build and run a Docker image

• Docker builds images by reading the instructions from a Dockerfile.

• Reminder: Dockerfile is a text file containing instructions for building your
source code.

• The default filename to use for a Dockerfile is Dockerfile, without a file
extension. Using the default name allows you to run the docker build command
without having to specify additional command flags

c© Martial Luyts – MDA course 25

• To compose a Dockerfile, different types of instructions will be used, e.g., :

• FROM <image>: Defines a base for your image.

• RUN <command>: Executes any commands in a new layer on top of the
current image and commits the result. In data science projects, this is often
incorporated within requirements.txt

• WORKDIR <directory>: Sets the working directory for any RUN, CMD,
ENTRYPOINT, COPY, and ADD instructions that follow it in the Dockerfile.

• COPY <src> <dest>: Copies new files or directories from <src> and adds
them to the filesystem of the container at the path <dest>.

c© Martial Luyts – MDA course 26

• ENV <command>: Set environment variables, if your application uses them.

• EXPOSE <command>: Expose a port that the application will listen on.

• CMD <command>: Lets you define the default program that is run once you
start the container based on this image. Each Dockerfile only has one CMD,
and only the last CMD instance is respected when multiple exist.

c© Martial Luyts – MDA course 27

Example: Build a dockerfile for a simple data science project

Step 1: Let’s say we want to install Python 3.9 with two of its libraries: pandas
and numpy.

• Create a requirements.txt file having the following text:

c© Martial Luyts – MDA course 28

• In the Dockerfile,

• the Python 3.9 image from DockerHub will be fetched using the FROM
statement;

• The requirements.txt file is copied from our local directory to the /tmp
directory using the COPY statement

• Execute a bash command for installing via pip using the RUN statement

c© Martial Luyts – MDA course 29

• To create an image, we build it running the command docker build, where, for
example, docker-for-ds is the image name and 1.0.0 is the version identifier.

• To check the list of images that we have created, we can run the following
docker image list command

c© Martial Luyts – MDA course 30

• We can now run the container from this image, and check whether installation of
the 2 libraries took place

c© Martial Luyts – MDA course 31

Step 2: Make changes to the Docker image by adding a runnable Python script
called test.py and create a directory called documents and populating it with
a non-empty text file called file.txt.

test.py:

c© Martial Luyts – MDA course 32

• The Dockerfile can now be adapted accordingly:

c© Martial Luyts – MDA course 33

• Build now an updated images, under version 1.0.1

c© Martial Luyts – MDA course 34

• Checking that everything works, by running the corresponding container under
this image:

c© Martial Luyts – MDA course 35

• Until now, a Dockerfile is composed manually with known instructions, and an
image is build throughout Docker CLI.

• Limitations: Time consuming and higher possibility for errors, resulting in
debugging.

• Alternatively, a Dockerfile and corresponding image can also be created using VS
Code, with the Docker extension.

• Advantages: Point-and-click strategy with pre-build statements, resulting in
less error making and faster composition.

c© Martial Luyts – MDA course 36

• Steps:

• Press Ctrl + Shift + P to open the Control Palette.

• Select Docker: Add Docker Files to Workspace... from the search
results list.

c© Martial Luyts – MDA course 37

• Choose the platform you used to develop the app, e.g., Python, Node.js, etc.

c© Martial Luyts – MDA course 38

• Type the number of the port your application listens on. Leave the field
empty if the app does not expose a port.

• Choose whether to include Docker Compose files (see later).

c© Martial Luyts – MDA course 39

• VS Code checks the files’ syntax and creates the necessary Dockerfile

c© Martial Luyts – MDA course 40

• To build an image for this Dockerfile, search for and select the Docker

Images: Build Image... command.

c© Martial Luyts – MDA course 41

• To run a container based on the image, search for and select the Docker

Images: Run command in the Control Palette

• Select the image to use for the container.

c© Martial Luyts – MDA course 42

• Select the image tag.

c© Martial Luyts – MDA course 43

1.9 Storing and sharing data

• By default, all files created inside a container are stored on a writable
container layer.

• The writable layer is unique per container.

c© Martial Luyts – MDA course 44

• Problem 1: Data written to the container layer doesn’t persist when the
container is destroyed.

• Problem 2: You can’t easily extract the data from the writeable layer to the
host, or to another container.

• Solution: Store data outside the writable layer of the container

• In Docker, different types of storage mounts exist, i.e.,

• Volumes

• Bind mounts

• tmpfs mounts

c© Martial Luyts – MDA course 45

• Each of them work differently and has different use cases.

• In what follows, we will discuss them, and explore different use cases and
examples.

c© Martial Luyts – MDA course 46

Volumes

• Volumes are persistent data stores for containers, created and managed by
Docker.

• Syntax for creating a volume in Docker CLI:

docker volume create <volume-name>

Example:

docker volume create my-vol

• When you create a volume, it is stored within a directory on the Docker host.

c© Martial Luyts – MDA course 47

• But in order to interact with the data in the volume, you must mount the
volume into a container.

Syntax:

docker run -d -v <volume-name>:<mount-path> <image-id>

Example:

docker run -d -v my-vol:/app/data my-image

• These volumes retain data even after the containers using them are removed.

c© Martial Luyts – MDA course 48

• Volume is managed by Docker, and are isolated from the core functionality of
the host machine.

c© Martial Luyts – MDA course 49

• To manage volumes, Docker CLI can be used, e.g.,

• List volumes: docker volume ls

• Inspect a volume: docker volume inspect my-vol

• Remove a volume: docker volume rm my-vol

c© Martial Luyts – MDA course 50

Bind mounts

• Bind mounts create a direct link between a host system path and a
container, allowing access to files or directories stored anywhere on the host file
system.

• Since they aren’t isolated by Docker, both non-Docker processes on the host and
container processes can modify the mounted files simultaneously.

c© Martial Luyts – MDA course 51

• Usage: When you need to be able to access files from both the container and
the host.

• Interesting when developing code locally and testing it inside the container

• Syntax:

docker run -v <host-path>:<container-path> <image-id>

Example:

docker run -v ${PWD}:/app/data my-image

• ${PWD} means ”Print Working Directory”. Alternatively, you can also write
the full path directly.

• Mount it inside the container at /app/data

c© Martial Luyts – MDA course 52

tmpfs mounts

• A tmpfs mount stores files directly in the host machine’s memory, ensuring the
data is not written to disk.

• This storage is ephemeral, i.e., the data is lost when the container is stopped or
restarted, or when the host is rebooted.

c© Martial Luyts – MDA course 53

• tmpfs mounts do not persist data either on the Docker host or within the
container’s filesystem.

• These mounts are suitable for

• Scenarios requiring temporary, in-memory storage, such as catching
intermediate data

• handling sensitive information like credentials

• Fast testing, since memory is faster than disk

c© Martial Luyts – MDA course 54

• Syntax:

docker run --tmpfs <container-path> <image-id>

Example:

docker run --tmpfs /app/logs my-image

• Mount /app/logs inside the container using tmpfs

• Everything written to /app/logs is stored in RAM

• Disappears when the container stops

c© Martial Luyts – MDA course 55

1.10 Networking

• Each Docker container can be seen as an app/service running inside its own
”box”, e.g.,

• Box 1 might have your data processing script

• Box 2 might have a database

• Box 3 might be a Jupyter notebook interface

• As result, each box is isolated, and operates independently from each other

c© Martial Luyts – MDA course 56

• Question: How can we connect containers with each other, and
to the outside world?

• Your script might need to get data from the database

• Your Jupyter notebook might want to send commands to the script

• The script might need to download data from the internet

• Answer: Docker networking

c© Martial Luyts – MDA course 57

• Docker networking allows precise control over container communication

• It can be seen as a system of invisible cables and routers that:

• Connect containers with each other

→ Your script can find the database

• Connect containers to the internet

→ They can download stuff

• Control what connections are allowed

→ Things don’t accidentally talk to the wrong services

• Without networking, containers are just silent boxes!

c© Martial Luyts – MDA course 58

• Different types of Docker networks exist:

• Bridge network (default and most common)

• Host network (fast but no isolation)

• None network (totally isolated)

• Overlay network

• In what follows, we will discuss them in simple terms!

c© Martial Luyts – MDA course 59

Think of Docker containers as rooms in a house (your Docker host), and the system
of hallways and doors as Docker networking.

c© Martial Luyts – MDA course 60

Bridge network

• A bridge network enables the connection between rooms within a house by
means of bridges

• A bridge is like a private hallway connecting these rooms.

• All the rooms can talk to each other if they are on the same hallway (i.e., the
same bridge network)

• By default, only rooms connected to the same hallway can talk to each other,
and not to the outside world.

• Question: Is there a way to access several rooms (containers) from the outside?

c© Martial Luyts – MDA course 61

• Answer: Yes, by exposing/publishing a port

• If you install a doorbell (publish a Docker port, open to the world), accessible
at the front entrance by outside persons, Docker knows which room
(container) to send the message to (port inside the container)

• Syntax:

docker run --p <host-port>:<container-port> <image-id>

Example:

docker run --p 8888:80 my-image

• Port 8888 on your computer (Docker host) is open to the world

• Any request to localhost:8888 get forwarded to port 80 inside the
container

• The container is still on the bridge network, but now we have created a
”window”

c© Martial Luyts – MDA course 62

• Docker uses bridge networking by default

• When installing Docker, a predefined default bridge network called ”bridge”
is created

• When you don’t specify a specific network to a container, e.g.,

docker run hello-world

Docker automatically connects the container to this bridge network

c© Martial Luyts – MDA course 63

• Alternatively, you can also explicitly create a custom bridge network, e.g.,
with name ”my bridge”:

docker network create my bridge

• To use this custom bridge network, and share it among different containers,
e.g., Jupyter notebook and a Postgres database, the following syntax can be
used:

docker run -d --name X1 --network my bridge jupyter/base-notebook

docker run -d --name X2 --network my bridge postgres

• The Jupyter container can now talk to Postgres using the name ”X2”

c© Martial Luyts – MDA course 64

Host network

• In the host network, the containers share the house’s address directly

• Thus, in contrary to bridge networking, a container doesn’t got its own
hallway/room, but it lives right in the main part of the house

• It uses the host’s network directly, meaning no isolation, same IP and ports as
the host.

c© Martial Luyts – MDA course 65

• Syntax:

docker run -d --name <name-id> --network host <image-id>

Example:

docker run -d --name postgres --network host postgres

None network

• In a none network, every container is locked in a soundproof, sealed room in
the house

• The container has no network access at all

c© Martial Luyts – MDA course 66

• Can’t talk to the host, internet, or other containers

• Syntax:

docker run -d --name <name-id> --network none <image-id>

Example:

docker run -d --name postgres --network none postgres

c© Martial Luyts – MDA course 67

Overlay network

• In an overlay network, rooms can come from different houses (hosts), but
have a private communication line

• Used in Docker Swarm, i.e., a tool for managing a cluster of Docker nodes
(hosts).

• It is like building a private telecom network so rooms in different houses can
talk as if they are in the same house

• Link for more information:
https : //docs.docker.com/engine/network/drivers/overlay/

c© Martial Luyts – MDA course 68

1.11 Managing multi-containers

• When your project starts to grow with different containers (for example, Jupyter
notebook + a database + a backend), you don’t want to start each container
manually with long docker run commands.

• Question: Is there a method that launch all containers with just one command?

• Solution: Docker compose

c© Martial Luyts – MDA course 69

• Docker compose is a tool that lets you define your whole setup in a simple
”compose” file (docker-compose.yml), and then launch everything with just
one command.

• Using the Compose command line tool you can create and start one or more
containers for each dependency with a single command (docker-compose up).

c© Martial Luyts – MDA course 70

• To stop them, you can use the following command:

docker-compose down

• Docker compose has different benefits, including:

• Reproducibility: It works the same every time, everywhere

• Collaboration: Your teammates can start working immediately

• Scaling your project: You can go from one container to many services, or
from your laptop to the cloud, without rewriting your project

• In what follows, we will setup a simple docker compose file for a single data
science container project, and extend it with an additional database container.

c© Martial Luyts – MDA course 71

Project 1: Setting up 1 container in Docker Compose

• Here, we would like to setup a container in Docker compose that

• Run Jupyter Notebooks

→ jupyter/scipy-notebook image from Dockerhub

• Install extra libraries like xgboost and seaborn

→ Customize the container with Dockerfile

• Save them locally under notebooks

→ Volumes

c© Martial Luyts – MDA course 72

• Folder structure:

c© Martial Luyts – MDA course 73

• In the requirements.txt file, we are going to include extra libraries

c© Martial Luyts – MDA course 74

• To create a customized image, i.e., running Jupyter notebooks with extra
libraries, we are constructing a Dockerfile as follows:

• Start with the official jupyter/scipy-notebook image from Dockerhub

• Copy the requirements.txt file into the container

• Install the extra libraries

c© Martial Luyts – MDA course 75

• We will now define the container within docker-compose.yml that runs the
following project:

• Build the image using the Dockerfile

• Open Jupyter on port 8888 (so you can visit it in your browser)

• Use volumes to save notebooks locally in the notebooks folder on your
computer

c© Martial Luyts – MDA course 76

• To use it, run the following command in your terminal:

docker-compose up

You will see logs in the terminal, and it will show a Jupyter Notebook URL with
a token. Open that in your browser!

• When you are done, close it as follows:

docker-compose down

c© Martial Luyts – MDA course 77

Project 2: Setting up 2 containers in Docker Compose

• Extend Project 1 by adding the option to store data in a powerful, open source
object-relational database, with the PostgreSQL database container

c© Martial Luyts – MDA course 78

• We extend docker-compose.yml by adding the official PostgreSQL database
image

c© Martial Luyts – MDA course 79

• In Docker compose, the depends on field is used to express the
dependencies between the services (images) and specify the order in which
these services should be started and stopped.

• Here, the jupyter service depends on the db service

• When using the docker-compose up command, Docker compose will start
the db service first, then start the jupyter service

• Link for more information: https : //docs.docker.com/compose/

c© Martial Luyts – MDA course 80

Part 2:

Introduction to Kubernetes

c© Martial Luyts – MDA course 81

2.1 What is Kubernetes?

• Reminder: Docker compose is a tool that lets you define and run
multi-container Docker applications on 1 host using a single YAML file

• Kubernetes takes that idea and scales it up to many machines

• In other words, it is a system to manage many containers, under different hosts.

c© Martial Luyts – MDA course 82

• Question: Why is this useful?

• Imagine you don’t have just one container, but hundreds, and you wish to:

• Launch them across many computers

• Restart them if they crash

• Scale them up or down

• Manage updates smoothly

• Problem: Handling all these things manually is hard!

• Kubernetes automates this, and can be seen as the shipping logistic system,
which decides when, where, and how containers run across a fleet of machines.

c© Martial Luyts – MDA course 83

• In other words, while Docker compose helps you build and test apps locally,
Kubernetes helps you run and manage them at scale in production.

• Remark: Setting up Kubernetes is hard, and involves much practice!

c© Martial Luyts – MDA course 84

2.2 Comparison with Docker

Feature Docker Compose Kubernetes

Scale Single machine Multi-machine, production-ready

Complexity Simple, easy to set up More complex, but powerful

Use case Local dev, testing Production, large-scale systems

Configuration One YAML file Many YAML files (pods, services, etc.)

Self-healing No automatic recovery Automatically restarts crashed containers

Ecosystem Basic networking and volumes Full orchestration (load balancing, scaling)

Table 0.1: Comparison between Docker Compose and Kubernetes

c© Martial Luyts – MDA course 85

	0. Introduction & outline of this class
	 0.1. Introduction
	 0.2. Outline of the class
	1. Infrastructure of Docker
	 1.1. What is Docker?
	 1.2. Benefits of Docker for Data Science
	 1.3. What is a Docker Container?
	 1.4. Key Docker Components
	 1.5. Installing Docker
	 1.6. Basic Docker commands
	 1.7. Docker extension in VS code
	 1.8. Build and run a Docker image
	 1.9. Storing and sharing data
	 1.10. Networking
	 1.11. Managing multi-container applications
	2. Introduction to Kubernetes
	 2.1. What is Kubernetes?
	 2.2. Comparison with Docker?

